\(\int \frac {\sqrt {d+e x}}{(b x+c x^2)^{3/2}} \, dx\) [417]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 231 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {4 \sqrt {c} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right ),\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {c} \sqrt {d+e x} \sqrt {b x+c x^2}} \]

[Out]

-2*(2*c*x+b)*(e*x+d)^(1/2)/b^2/(c*x^2+b*x)^(1/2)+4*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*c^(1/
2)*x^(1/2)*(1+c*x/b)^(1/2)*(e*x+d)^(1/2)/(-b)^(3/2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2*(-b*e+2*c*d)*EllipticF
(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*x^(1/2)*(1+c*x/b)^(1/2)*(1+e*x/d)^(1/2)/(-b)^(3/2)/c^(1/2)/(e*x+d
)^(1/2)/(c*x^2+b*x)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {750, 857, 729, 113, 111, 118, 117} \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (2 c d-b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right ),\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {c} \sqrt {b x+c x^2} \sqrt {d+e x}}+\frac {4 \sqrt {c} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}} \]

[In]

Int[Sqrt[d + e*x]/(b*x + c*x^2)^(3/2),x]

[Out]

(-2*(b + 2*c*x)*Sqrt[d + e*x])/(b^2*Sqrt[b*x + c*x^2]) + (4*Sqrt[c]*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*El
lipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/((-b)^(3/2)*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (
2*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e
)/(c*d)])/((-b)^(3/2)*Sqrt[c]*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 113

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x]*(Sqrt[
1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])), Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])

Rule 118

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[1 + d*(x/c)]*
(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])), Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 729

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]), Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 750

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(b + 2*c
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Dist[1/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m
 - 1)*(b*e*m + 2*c*d*(2*p + 3) + 2*c*e*(m + 2*p + 3)*x)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d
, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m
, 0] && (LtQ[m, 1] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {2 \int \frac {\frac {b e}{2}+c e x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{b^2} \\ & = -\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {(2 c) \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx}{b^2}-\frac {(2 c d-b e) \int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{b^2} \\ & = -\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {\left (2 c \sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{b^2 \sqrt {b x+c x^2}}-\frac {\left ((2 c d-b e) \sqrt {x} \sqrt {b+c x}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}} \, dx}{b^2 \sqrt {b x+c x^2}} \\ & = -\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {\left (2 c \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{b^2 \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {\left ((2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}} \, dx}{b^2 \sqrt {d+e x} \sqrt {b x+c x^2}} \\ & = -\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {4 \sqrt {c} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {c} \sqrt {d+e x} \sqrt {b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.19 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\frac {2 \sqrt {\frac {b}{c}} (d+e x)+4 i e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )-2 i e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right ),\frac {c d}{b e}\right )}{b \sqrt {\frac {b}{c}} \sqrt {x (b+c x)} \sqrt {d+e x}} \]

[In]

Integrate[Sqrt[d + e*x]/(b*x + c*x^2)^(3/2),x]

[Out]

(2*Sqrt[b/c]*(d + e*x) + (4*I)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqr
t[x]], (c*d)/(b*e)] - (2*I)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x
]], (c*d)/(b*e)])/(b*Sqrt[b/c]*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

Maple [A] (verified)

Time = 2.00 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.52

method result size
default \(\frac {2 \left (\sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} e -2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b c d -2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} e +2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b c d -2 c^{2} e \,x^{2}-b c e x -2 c^{2} d x -b c d \right ) \sqrt {x \left (c x +b \right )}}{x \left (c x +b \right ) b^{2} c \sqrt {e x +d}}\) \(352\)
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (-\frac {2 \left (c e \,x^{2}+b e x +c d x +b d \right )}{b^{2} \sqrt {x \left (c e \,x^{2}+b e x +c d x +b d \right )}}-\frac {2 \left (c e \,x^{2}+c d x \right )}{b^{2} \sqrt {\left (\frac {b}{c}+x \right ) \left (c e \,x^{2}+c d x \right )}}+\frac {2 \left (\frac {b e -c d}{b^{2}}+\frac {c d}{b^{2}}\right ) b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}+\frac {4 e \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) E\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{b \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(421\)

[In]

int((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*(((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(
1/2))*b^2*e-2*((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(
b*e-c*d))^(1/2))*b*c*d-2*((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+b)/b)^(
1/2),(b*e/(b*e-c*d))^(1/2))*b^2*e+2*((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((
c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c*d-2*c^2*e*x^2-b*c*e*x-2*c^2*d*x-b*c*d)/x*(x*(c*x+b))^(1/2)/(c*x+b)/
b^2/c/(e*x+d)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 379, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \, {\left ({\left ({\left (2 \, c^{2} d - b c e\right )} x^{2} + {\left (2 \, b c d - b^{2} e\right )} x\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) + 6 \, {\left (c^{2} e x^{2} + b c e x\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right ) + 3 \, {\left (2 \, c^{2} e x + b c e\right )} \sqrt {c x^{2} + b x} \sqrt {e x + d}\right )}}{3 \, {\left (b^{2} c^{2} e x^{2} + b^{3} c e x\right )}} \]

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="fricas")

[Out]

-2/3*(((2*c^2*d - b*c*e)*x^2 + (2*b*c*d - b^2*e)*x)*sqrt(c*e)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2
*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d +
 b*e)/(c*e)) + 6*(c^2*e*x^2 + b*c*e*x)*sqrt(c*e)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)/(c^2*e^2),
-4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), weierstrassPInverse(4/3*(c^2*d^2 - b*
c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), 1/3*(3*c*
e*x + c*d + b*e)/(c*e))) + 3*(2*c^2*e*x + b*c*e)*sqrt(c*x^2 + b*x)*sqrt(e*x + d))/(b^2*c^2*e*x^2 + b^3*c*e*x)

Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d + e x}}{\left (x \left (b + c x\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((e*x+d)**(1/2)/(c*x**2+b*x)**(3/2),x)

[Out]

Integral(sqrt(d + e*x)/(x*(b + c*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + b x\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 + b*x)^(3/2), x)

Giac [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + b x\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 + b*x)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (c\,x^2+b\,x\right )}^{3/2}} \,d x \]

[In]

int((d + e*x)^(1/2)/(b*x + c*x^2)^(3/2),x)

[Out]

int((d + e*x)^(1/2)/(b*x + c*x^2)^(3/2), x)